Code Generators
Code Converters

Assembly To Solidity Converter

Programming languages Logo

Convert hundreds of lines of Assembly code into Solidity with one click. Completely free, no sign up required.

Share via

Other Assembly Converters

What Is Assembly To Solidity Converter?

An Assembly To Solidity converter is an online Tool that translates code from Assembly language inTo Solidity, which is used for smart contracts on the Ethereum blockchain. This converter leverages advanced technologies such as generative artificial intelligence, machine learning, natural language processing, and deep learning To ensure accurate code conversion.

The process consists of three clear steps:

  1. Input: You start by providing the Assembly code that requires conversion.
  2. Processing: The converter examines the submitted code. It employs sophisticated algorithms To break down and understand the structure and functionality of the Assembly code, ensuring that all relevant components are accurately interpreted.
  3. Output: The Tool generates the corresponding Solidity code, which you can directly apply in your blockchain projects.

How Is Assembly Different From Solidity?

Assembly is a low-level programming language that engages directly with the Ethereum Virtual Machine (EVM), while Solidity is a high-level language crafted specifically for writing smart contracts on Ethereum. Recognizing the distinctions between these two languages can facilitate a smoother transition from Assembly to Solidity for developers.

  • Syntax: Assembly’s syntax is intricate, demanding meticulous management of low-level operations, which can be daunting for many programmers. Conversely, Solidity offers a simplified and more expressive syntax, making it more approachable for those familiar with programming concepts but not necessarily with blockchain technology.
  • Functionality: With Assembly, developers gain fine-tuned control over gas usage and transaction efficiency, which is crucial for performance-sensitive applications. In contrast, Solidity abstracts away many of these underlying details, allowing developers to concentrate on building robust, contract-based solutions without getting bogged down in low-level mechanics.
  • Error Handling: Assembly’s error handling is quite limited, often leaving developers to handle faults with minimal support. However, Solidity enhances the development experience with its built-in error handling constructs, such as `require`, `assert`, and `revert`, empowering developers to manage the execution flow better and improve code reliability.
  • Use Cases: Typically, Assembly is employed for applications where performance is paramount, such as executing complex algorithms or optimizing gas efficiency. Solidity, on the other hand, is the preferred choice for user-friendly smart contracts that emphasize security, maintainability, and ease of use, making it accessible to a broader audience.
Feature Assembly Solidity
Control Direct manipulation of EVM Utilizes high-level abstractions
Syntax Complexity Complex, requiring low-level knowledge Simpler, more user-friendly
Error Handling Minimal support for errors Comprehensive error handling options
Performance Highly optimized, efficient gas usage Generally less optimized due to high-level abstractions

How Does Minary’s Assembly To Solidity Converter Work?

The Minary Assembly To Solidity converter operates with a streamlined user experience designed to transform detailed task descriptions into functional Solidity code. Begin by inputting a thorough description of the task you want to convert on the left side of the interface. The more specific you are, the better the output will align with your needs. Once you’ve documented your task, simply click the generate button.

As the generator processes your input, it quickly translates your detailed prompt into Solidity code, which you’ll see appear on the right side of the screen. This output provides you with the actual code you can use immediately. Want to save this code? Just click the copy button located at the bottom, and your code is ready to be pasted wherever you need it.

Feedback is a crucial element of this process. Below the generated code, you’ll find feedback vote buttons that let you indicate whether the output met your expectations. This feedback loop helps refine and improve the Assembly To Solidity converter, as the information you provide trains the underlying model to produce even better results in the future.

For example, if you describe a smart contract that manages a decentralized voting mechanism with multiple candidates and a secure tallying process, you might input something like: “Create a smart contract for a voting system where users can vote for different candidates, ensuring that each address can vote only once.” After clicking generate, you’ll receive tailored Solidity code that meets those specifications, ready for implementation.

Examples Of Converted Code From Assembly To Solidity

section .data
prompt db ‘Enter a number: ‘, 0
prompt_len equ $ – prompt
result_msg db ‘Factorial is: ‘, 0
result_msg_len equ $ – result_msg
num resb 10
num_len equ 10

section .bss
factorial resq 1

section .text
global _start

_start:
; Prompt user for input
; syscall: write (sys_write)
mov rax, 1 ; syscall number for sys_write
mov rdi, 1 ; file descriptor: stdout
mov rsi, prompt ; pointer to the message
mov rdx, prompt_len ; message length
syscall

; Read user input
; syscall: read (sys_read)
mov rax, 0 ; syscall number for sys_read
mov rdi, 0 ; file descriptor: stdin
mov rsi, num ; buffer to store input
mov rdx, num_len ; maximum bytes to read
syscall

; Convert string to integer
mov rsi, num
xor rax, rax ; Clear RAX (factorial value)
xor rcx, rcx ; Clear RCX (multiplier)
next_digit:
movzx rbx, byte [rsi] ; Load byte from input string
cmp rbx, 10 ; Check for newline character
je calculate_factorial
sub rbx, ‘0’ ; Convert ASCII to integer
imul rax, rax, 10 ; Shift left (multiply by 10)
add rax, rbx ; Add the current digit
inc rsi ; Move to the next character
jmp next_digit

calculate_factorial:
mov rbx, rax ; Store the number in RBX
mov rax, 1 ; Initialize factorial to 1

factorial_loop:
test rbx, rbx ; Check if RBX is 0
jz done ; If yes, we’re done
imul rax, rax, rbx ; Multiply current factorial value by RBX
dec rbx ; Decrement RBX
jmp factorial_loop

done:
; Print result message
mov rax, 1 ; syscall number for sys_write
mov rdi, 1 ; file descriptor: stdout
mov rsi, result_msg ; pointer to the result message
mov rdx, result_msg_len ; message length
syscall

; Convert result to string and print
mov rsi, factorial
mov rdi, rax ; Move the result into RDI for conversion
call print_number

; Exit program
mov rax, 60 ; syscall number for sys_exit
xor rdi, rdi ; exit code 0
syscall

print_number:
; Convert number in RDI to string (reverse order)
mov rax, rdi
mov rcx, 10
mov rdi, num
add rdi, num_len ; Set pointer to the end
mov byte [rdi], 0 ; Null-terminate the string
dec rdi ; Move to the last character

reverse_loop:
xor rdx, rdx ; Clear RDX for division
div rcx ; Divide RAX by 10, result in RAX, remainder in RDX
add dl, ‘0’ ; Convert remainder to ASCII
dec rdi ; Move backward in the buffer
mov [rdi], dl ; Store the ASCII character
test rax, rax
jnz reverse_loop ; Repeat until RAX is 0

; Print the final result string
mov rax, 1 ; syscall number for sys_write
mov rdi, 1 ; file descriptor: stdout
mov rsi, rdi ; pointer to the converted number
sub rsi, rdi ; get the actual start pointer
mov rdx, num + num_len – rdi ; length of the string
syscall

ret

pragma solidity ^0.8.0;

contract FactorialCalculator {
string constant msg = “Enter a number:”;
string constant resultMsg = “Factorial is:”;

function factorial(uint8 n) public pure returns (uint256) {
require(n <= 20, "Input too large to compute factorial."); uint256 result = 1; for (uint8 i = 1; i <= n; i++) { result *= i; } return result; } function calculateFactorial(uint8 n) public pure returns (string memory) { uint256 fact = factorial(n); return string(abi.encodePacked(resultMsg, " ", uint2str(fact))); } function uint2str(uint256 _i) internal pure returns (string memory) { if (_i == 0) { return "0"; } uint256 j = _i; uint256 len; while (j != 0) { len++; j /= 10; } bytes memory bstr = new bytes(len); uint256 k = len; while (_i != 0) { bstr[--k] = bytes1(uint8(48 + _i % 10)); _i /= 10; } return string(bstr); } }

section .data
prompt db ‘Enter a positive integer: ‘, 0
result_msg db ‘The factorial is: ‘, 0
factorial resb 10
input resb 10

section .bss
number resb 4
factorial_value resb 4

section .text
global _start

_start:
; Print the prompt message
mov eax, 4
mov ebx, 1
mov ecx, prompt
mov edx, 24
int 0x80

; Read input from user
mov eax, 3
mov ebx, 0
mov ecx, input
mov edx, 10
int 0x80

; Convert input string to integer
mov eax, 0
mov ecx, input
call str_to_int

; Store the number
mov [number], eax

; Calculate factorial
mov ebx, 1 ; ebx will hold the factorial result
mov ecx, [number] ; ecx will hold the input number

factorial_loop:
cmp ecx, 1
jle factorial_done
imul ebx, ecx ; ebx = ebx * ecx
dec ecx ; ecx = ecx – 1
jmp factorial_loop

factorial_done:
; Convert factorial result to string
mov eax, ebx
call int_to_str

; Print the result message
mov eax, 4
mov ebx, 1
mov ecx, result_msg
mov edx, 18
int 0x80

; Print the factorial value
mov eax, 4
mov ebx, 1
mov ecx, factorial
mov edx, 10
int 0x80

; Exit the program
mov eax, 1
xor ebx, ebx
int 0x80

; Function to convert string to integer
str_to_int:
xor eax, eax ; clear eax
xor edx, edx ; clear edx (for the multiplication)
.next_digit:
movzx ebx, byte [ecx] ; load byte from string
cmp ebx, 10 ; check for newline
je .done_converting
sub ebx, ‘0’ ; convert ASCII to integer
imul eax, eax, 10 ; eax = eax * 10
add eax, ebx ; eax = eax + digit
inc ecx ; move to next character
jmp .next_digit
.done_converting:
ret

; Function to convert integer to string
int_to_str:
mov esi, factorial
mov edi, 10
xor ecx, ecx ; clear digit count

.convert_loop:
xor edx, edx
div edi ; divide EAX by 10
add dl, ‘0’ ; convert to ASCII
push dx ; push the digit onto the stack
inc ecx ; increment digit count
test eax, eax
jnz .convert_loop

.print_loop:
pop dx ; pop the last digit
mov [esi], dl ; store the digit in the result string
inc esi ; move to the next position
loop .print_loop

mov byte [esi], 0 ; null-terminate the string
ret

pragma solidity ^0.8.0;

contract FactorialCalculator {
string public resultMessage;
string public factorialResult;

function calculateFactorial(string memory input) public {
uint256 number = strToInt(input);
uint256 factorialValue = computeFactorial(number);
factorialResult = uintToStr(factorialValue);
resultMessage = “The factorial is: “;
}

function strToInt(string memory input) internal pure returns (uint256) {
bytes memory b = bytes(input);
uint256 result = 0;
for (uint256 i = 0; i < b.length; i++) { result = result * 10 + (uint256(uint8(b[i])) - uint256(uint8('0'))); } return result; } function computeFactorial(uint256 number) internal pure returns (uint256) { if (number == 0 || number == 1) { return 1; } uint256 result = 1; for (uint256 i = 2; i <= number; i++) { result *= i; } return result; } function uintToStr(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } }

Try our Code Generators in other languages